Вазы
(605)
Фильтровать
Покупатели оценили: 4.7/5
20 130 оценок. Смотреть все

Стекло вазы

Фильтровать
0.0 (0)
1547
БЫСТРАЯ ДОСТАВКА
-31%
0.0 (0)
3094 4512
0.0 (0)
3750
БЫСТРАЯ ДОСТАВКА
0.0 (0)
1264
БЫСТРАЯ ДОСТАВКА
0.0 (0)
2414
БЫСТРАЯ ДОСТАВКА
0.0 (0)
4636
НОВИНКА
0.0 (0)
2649
НОВИНКА
0.0 (0)
3000
-53%
0.0 (0)
1478 3167
0.0 (0)
1683
-47%
0.0 (0)
2129 4030
0.0 (0)
3858
0.0 (0)
2433
0.0 (0)
2041
0.0 (0)
3259
0.0 (0)
3300
БЫСТРАЯ ДОСТАВКА
0.0 (0)
2700
БЫСТРАЯ ДОСТАВКА
0.0 (0)
2700
БЫСТРАЯ ДОСТАВКА
0.0 (0)
2650
БЫСТРАЯ ДОСТАВКА
0.0 (0)
2400
БЫСТРАЯ ДОСТАВКА
0.0 (0)
2300
БЫСТРАЯ ДОСТАВКА
0.0 (0)
2850
БЫСТРАЯ ДОСТАВКА
-44%
0.0 (0)
2800 5000
БЫСТРАЯ ДОСТАВКА
-60%
0.0 (0)
126 315
БЫСТРАЯ ДОСТАВКА
0.0 (0)
2759
БЫСТРАЯ ДОСТАВКА
-60%
0.0 (0)
146 365
БЫСТРАЯ ДОСТАВКА
-22%
0.0 (0)
8268 10722
-10%
0.0 (0)
5850 6500
БЫСТРАЯ ДОСТАВКА
0.0 (0)
889
БЫСТРАЯ ДОСТАВКА
-35%
0.0 (0)
99995 1 56100
БЫСТРАЯ ДОСТАВКА
0.0 (0)
1599
БЫСТРАЯ ДОСТАВКА
0.0 (0)
1264
БЫСТРАЯ ДОСТАВКА
0.0 (0)
1560
БЫСТРАЯ ДОСТАВКА
This book gives a mathematical treatment of the introduction to qualitative differential equations and discrete dynamical systems. The treatment includes theoretical proofs, methods of calculation, and applications. The two parts of the book, continuous time of differential equations and discrete time of dynamical systems, can be covered independently in one semester each or combined together into a year long course. The material on differential equations introduces the qualitative or geometric approach through a treatment of linear systems in any dimensions. There follows chapters where equilibria are the most important feature, where scalar (energy) functions is the principal tool, where periodic orbits appear, and finally chaotic systems of differential equations. The many different approaches are systematically introduced through examples and theorems. The material on discrete dynamical systems starts with maps of one variable and proceeds to systems in higher dimensions. The treatment starts with examples where the periodic points can be found explicitly and then introduces symbolic dynamics to analyze where they can be shown to exist but not given in explicit form. Chaotic systems are presented both mathematically and more computationally using Lyapunov exponents. With the one-dimensional maps as models, the multidimensional maps cover the same material in higher dimensions. This higher dimensional material is less computational and more conceptual and theoretical. The final chapter on fractals introduces various dimensions which is another computational tool for measuring the complexity of a system. It also treats iterated function systems which give examples of complicated sets. In the second edition of the book, much of the material has been rewritten to clarify the presentation. Also, some new material has been included in both parts of the book. This book can be used as a textbook for an advanced undergraduate course on ordinary differential equations and/or dynamical systems. Prerequisites are standard courses in calculus (single variable and multivariable), linear algebra, and introductory differential equations.
0.0 (0)
4254
БЫСТРАЯ ДОСТАВКА
0.0 (0)
2644
БЫСТРАЯ ДОСТАВКА
0.0 (0)
1264
БЫСТРАЯ ДОСТАВКА
0.0 (0)
2000
БЫСТРАЯ ДОСТАВКА
0.0 (0)
4254
БЫСТРАЯ ДОСТАВКА
0.0 (0)
5000 5500
БЫСТРАЯ ДОСТАВКА
-45%
0.0 (0)
2777 5051
-53%
0.0 (0)
1289 2773
0.0 (0)
2043
0.0 (0)
3142