Искали:

bio

Найденные товары (139)
Фильтровать
Покупатели оценили: 4.7/5
20 214 оценок. Смотреть все
Фильтровать
-5€ СВЫШЕ 100€ С КОДОМ*
0.0 (0)
46500
0.0 (0)
10385
Быстрая доставка
-5€ СВЫШЕ 100€ С КОДОМ*
0.0 (0)
2230 РРС 3490
Заберите завтра
-28%
-5€ СВЫШЕ 100€ С КОДОМ*
4.7 (7)
10900 НЦС 15200
Заберите завтра
-5€ СВЫШЕ 100€ С КОДОМ*
5.0 (1)
3419
Быстрая доставка
0.0 (0)
2200 2900 РРС 2990
Быстрая доставка
-40%
0.0 (0)
6357 10743
Быстрая доставка
-5€ СВЫШЕ 100€ С КОДОМ*
0.0 (0)
1499 РРС 1790
Заберите завтра
-5€ СВЫШЕ 100€ С КОДОМ*
0.0 (0)
8635 9140
Заберите завтра
-5€ СВЫШЕ 100€ С КОДОМ*
4.0 (2)
959 РРС 1190
Заберите завтра
-19%
4.8 (4)
20536 25443
-5€ СВЫШЕ 100€ С КОДОМ*
0.0 (0)
1612 РРС 4690
-5€ СВЫШЕ 100€ С КОДОМ*
0.0 (0)
2762 РРС 3190
0 €
0.0 (0)
3799
0 €
0.0 (0)
5299
-5€ СВЫШЕ 100€ С КОДОМ*
0.0 (0)
2599 РРС 4690
СКОРО БУДЕТ
-23%
0.0 (0)
8508 11060
0.0 (0)
19722
0.0 (0)
15398
Быстрая доставка
0.0 (0)
14502
Быстрая доставка
0.0 (0)
23600
Быстрая доставка
0.0 (0)
25581
Быстрая доставка
0.0 (0)
22277
Быстрая доставка
0.0 (0)
29488
Быстрая доставка
0.0 (0)
33500
Быстрая доставка
0.0 (0)
30700
Быстрая доставка
0.0 (0)
29485
Быстрая доставка
0.0 (0)
33485
Быстрая доставка
0.0 (0)
30683
Быстрая доставка
This book gives a mathematical treatment of the introduction to qualitative differential equations and discrete dynamical systems. The treatment includes theoretical proofs, methods of calculation, and applications. The two parts of the book, continuous time of differential equations and discrete time of dynamical systems, can be covered independently in one semester each or combined together into a year long course. The material on differential equations introduces the qualitative or geometric approach through a treatment of linear systems in any dimensions. There follows chapters where equilibria are the most important feature, where scalar (energy) functions is the principal tool, where periodic orbits appear, and finally chaotic systems of differential equations. The many different approaches are systematically introduced through examples and theorems. The material on discrete dynamical systems starts with maps of one variable and proceeds to systems in higher dimensions. The treatment starts with examples where the periodic points can be found explicitly and then introduces symbolic dynamics to analyze where they can be shown to exist but not given in explicit form. Chaotic systems are presented both mathematically and more computationally using Lyapunov exponents. With the one-dimensional maps as models, the multidimensional maps cover the same material in higher dimensions. This higher dimensional material is less computational and more conceptual and theoretical. The final chapter on fractals introduces various dimensions which is another computational tool for measuring the complexity of a system. It also treats iterated function systems which give examples of complicated sets. In the second edition of the book, much of the material has been rewritten to clarify the presentation. Also, some new material has been included in both parts of the book. This book can be used as a textbook for an advanced undergraduate course on ordinary differential equations and/or dynamical systems. Prerequisites are standard courses in calculus (single variable and multivariable), linear algebra, and introductory differential equations.
0.0 (0)
4254
Быстрая доставка
-23%
0.0 (0)
7522 9854
-23%
0.0 (0)
2964 3899
-23%
0.0 (0)
4763 6192
-23%
0.0 (0)
6793 8831
-11%
0.0 (0)
3999 4499
0.0 (0)
26390
Быстрая доставка
0.0 (0)
24790
Быстрая доставка
0.0 (0)
26777
Быстрая доставка
0.0 (0)
30685
Быстрая доставка